Emergency Calling Summary

The recent earthquake in Türkiye and Syria reminded everyone how important the disaster and recovery management is. Mobile network was the first part of the critical infrastructure which was involved in the emergency situation. Although it was partially damaged itself, right from the beginning it had to withstand the initial load of calls and further support coordination of AFAD responders, police, gendarmerie, soldiers, volunteers and other personnel. At the same time it had to maintain the regular calls, which were not less important. Mobile communication was helping to reunite families as well as to provide access to important information and news.

The same way everyone should recap first aid procedures time to time, operators should recap the disaster and recovery plans and emergency communication flows. I’m currently working on mobile network deployment in Mexico, where earthquakes are a common place. Therefore we take this very seriously and we know there is no excuse for us if we fail.

Let’s quickly go through the basic requirements on emergency calling in mobile networks.

Continue reading

SMSC – 30 years later

In December 1992 there was sent the first SMS. At that time there were several different vendors working on their first SMSCs. I was lucky enough to work later with some of the engineers involved. Anyways that is an ancient history now. Since that the SMS Service and the SMSC have become a must for every mobile network. Perhaps we can go trough the general SMSC network architecture, list some of the typical features and then to discuss the SMS evolution in 5G networks.

2G/3G SMSC Architecture

The SMSC was designed as an integral part of 2G mobile network, supporting several basic message flows, which are mostly valid even in 2022:

  • Person-to-Person (P2P)
  • Application-to-Person (A2P/P2A). This was a real game changer. People in late 90s were texting (and paying) as crazy to get new ringing tones, text-frames on their monochromatic displays or at least a weather forecast or bus schedule. The A2P is still a popular way how to create a significant wholesale interconnection and also valid for MIoT (Mobile Internet of Things). Last but not least we shouldn’t forget the importance of SMS in Two-Factor-Authentication (2FA).
  • Technical enabler: Over the Air OTA messaging for (U)SIM provisioning. OTA is still critical for many operators. Another example is an IP session wake-up, which might be a key technical enabler for some Machine Type Communication MTC/MioT applications.
Continue reading

It’s All about Money! VoLTE Charging

Charging has been for a long time on my todo list. Now it’s the time and you can expect couple of posts related to charging, mainly Online Charging. Today we’ll go through the most basic stuff. For details refer to 3GPP 32.240.

Charging is a world of its own, it has its own rules, flows and well, also documentation. To really understand how to properly charge your calls, data, or messages is probably the same or even bigger challenge than to understand the actual service.

Charging Specification – source 3GPP 32.240

Charging Mechanisms

GSM/UMTS/EPC networks provide functions that implement offline and/or online charging mechanisms on the bearer (e.g. EPC), subsystem (e.g. IMS) and service (e.g. SMS) levels. In order to support these charging mechanisms, the network performs real-time monitoring of resource usage for those three levels in order to detect the relevant chargeable events.

In general we recognize Online and Offline charging mechanisms. They may be performed simultaneously and independently for the same charging events.

Continue reading

News: 5G – is our health the toll to pay?

After years in mobile industry with 5G I’ve recently started to be more cautious about health implications. For last 12 months I’m going through various studies and honestly it is difficult to come to any final conclusion. Some researchers claim that there is no evidence cell phones would increase risk of cancer, some argument with studies on rats, where radiation makes rats uniquely prone to a rare tumor called a schwannoma. As a technician it is hard to judge for me, but there are some basic facts, which I’ve noted down:

  • to call only is not that bad, to use mobile for data is a completely different story
  • non-ioinizing radiation maybe more harmful than it was thought
  • studies reveal that the exposure to cell phones, laptops, or Wi-Fi affect sperm in their count, morphology, motility, an increased DNA damage
  • we don’t have much evidence on mobile induced cancer when it comes to humans
  • studies are mostly miles behind the current technological development
  • distance matters – just a few centimeters can make a difference

As I said, I was strugeling a bit while reading through studies. A great summary on this has been published by Julia Belluz and Dylan Collins at Vox – A comprehensive guide to the messy, frustrating science of cellphones and health.

 

What would happen if the scientists would actually prove, that 5G can mean a serious risk to us? Many people are so adicted to Internet, that they are ok to pay by their own health anyway. Not talking about all those companies which invested so much into 5G and AR/VR..  Lets’ wait for some clear data and don’t keep cellphones in our pockets till then – just for sure.

You can monitor your RF emission with free Quanta Monitor app.

Quanta Monitor by Cellraid

Other resources:

https://rbej.biomedcentral.com/articles/10.1186/s12958-018-0431-1?fbclid=IwAR3edLcWcbenIej07w7YF9a7_mBHV6xaSU3pWRdRTfu7Y7arr7PwfMMxMmE

 

AR, VR – Real-time communication in 5G

GSMA Intelligence forecasts that the number of 5G connections globally will reach 1.3 billion by 2025, covering 40 percent of the world’s population or approximately 2.7 billion people. At that time, the Americas region is expected to account for over 260 million 5G connections or 20 percent of the global market.

The question everyone is asking in telco last couple of years is – do we really need 5G? Do we really need that throughput for our voice, video and messaging services? Can we significantly improve real-time communication services so that customers would be willing to pay for it? RCS aka Advanced Messaging is a great example of how difficult it can be to find the right business model for new technologies. EVS supported in 4G is more than what we need for voice calling. Although video calling is possible in 4G, not that many customers are using this option on their mobile devices. More popular than video is desktop-sharing, collaboration and communication in context. Well, lower latency and better throughput can be useful – but is it a reason strong enough to invest into the new 5G infrastructure, when collaboration applies mainly to fixed networks?

5G Drivers. Source GSMA

Still there are real-time communication applications which require low latency and huge amount of data so that 4G is not enough. Virtual Reality (VR) applications like 360-degree video will necessitate higher resolutions of 8K and above, and stereoscopic video (which separates left and right eye views in VR) also requires additional bandwidth. When most people hear about 3D video, holograms, Augmented Reality (AR) and Virtual Reality (VR), they mostly think about gaming. And yes, gaming can be a good example and people like to spend money for entertainment. But there are other examples, where AR and VR can make a difference.

Continue reading

News: Bitcoin and Mobile Networks?

Our current economy is digitized and generates an exponential growth of person-to-person (P2P) transactions. On the other hand we often face challenges around flexibility, trust, identity and authorization that existing financial instruments are sometimes struggling to address.

And that’s where blockchain comes into play. Blockchain is designed as a secure distributed system with high Byzantine fault tolerance. The most successful use cases for blockchain today are related to financial transactions and the management of financial assets. The most famous examples include Bitcoin, Ethereum, Ripple or Hyperledger.

Growth of Cryptocurrencies, © GSMA Intelligence 2018

GSMA Intelligence recently published a new issue of Global Mobile Radar, which analyzes the relationship of blockchain and mobile communications.

Continue reading

News: RTC in 2017

GSMA has just recently published the final numbers for 2017. As expected the last year we’ve seen less 4G deployments than in 2016.

4G Deployments in 2017

The only exception was the RCS. (Btw. GSMA released its Universal Profile Version 2.0 for Advanced RCS Messaging.)

From the population coverage point of view the last year meant a great step forward. Although many developing countries have been still more focused on 3G (4G coverage is on average 35% there), the overall number of 4G coverage increased significantly.

Population Coverage, © GSMA Intelligence 2017

The main reasons for that are:

  • China has achieved 99% coverage in less than three years and it is now 4G-first
  • In India Reliance Jio has beem driving the technological move towards 4G and other operators are following

Technology Migration© GSMA Intelligence 2017

Continue reading

News: Mobile IoT Deployments

The last time we discussed 5G and IMS. One of the main drivers for 5G is Machine-2-Machine (M2M) communication. But surely 5G is not the only technology which enables Internet of Things (IoT). Many operators already do support proprietary technologies such as SigFox or LoRaWAN. But there are also 3GPP standardized (Release 13) networks for IoT other than 5G. They are LTE-M and NB-IoT, and they both operate on licensed spectrum. These technologies came a bit later, however now it seems they are gaining momentum.

On GSMA pages you can now find an interactive map with the existing IoT deployments.

GSMA IoT Map, © GSMA 2017

Let’s compare LTE-M and NB-IoT and take a look how they can benefit us.

Continue reading

VoIMS – IMS and 5G

Update:

This post is getting a bit rusty over the time. I plan to create some new stuff. Meanwhile I’d recommend to check GSMA IMS Profile for Voice, Video and Messaging over 5GS. And for those who want to know more 3GPP TR 23.700-10 Study on enhanced IMS to 5GC integration.

Maybe you have already heard about some features as Dynamical Network Slicing, CloudRAN, Network-as-a-Services, …  Some basic 5G principals we’ll briefly discussed also in this post. However my question is: What will be the change from the real-time communication point of view? What will be the 5G calling look like? Is the IMS (IP Multimedia Services, don’t confuse with International Microwave Symposium) to stay in the operators’ networks?

5G Deployments Sep, 2019 by 5G Americas

Seems that at the first stage the change will be less dramatic than when we introduced 4G. 4G was in many ways a revolution, whereas 5G is “only” an evolution. In fact 4G and 5G, at least in the beginning, will coexist and complement one each other. Still 5G will have a big impact on our existing technologies and the way we work with telecommunication networks.

5GS + EPC + IMS

Continue reading