IMS Centralized Services – Overview

Have you heard about the IMS Centralized Services (ICS)? The basic idea is fairly simple. We want to apply services for IMS subscribers, regardless what access network they use. We know that in IMS we can do it for all IP-based access domains. But if the subscriber is accessing through the legacy CS network (e.g. because of a low LTE coverage in her area), we are still triggering the services in the CS Core network … right, unless we have the ICS in place. So ICS enables the IMS services even when one is using CS access for the media bearer.

IMS Centralized Services

The ICS is specified in GSMA IR.64 and 3GPP TS 23.292, 23.237 and 23.216. The scope of the specification includes:

  • Session establishment when using CS access for media transmission for an IMS service
  • Support of Service Continuity
  • Support of Single Radio Voice Call Continuity
  • Access Domain Selection (ADS)
  • IMS control of services where the media is transported via the CS network (e.g. managing of mid-call services)
  •  Service data management

The solution is applicable for UEs with or even without ICS functionality. As the first step all the sessions have to be anchored in the IMS. That is a job for Service Centralization and Continuity Application Server (SCC AS). The SCC AS is on the signalling path for both the originating and terminating services. Using the initial Filter Criteria (IFC), the SCC AS is triggered as the first AS for originating sessions and as the last for terminating sessions.

Continue reading

NEWS: Number Portability & ENUM

Even in 2017 the telephone number remains the most universal identifier for real-time communication. And as the word is moving to be All-IP, we have to be able to translate the number into something more meaningful for routing in IP networks. The GSMA organization selected for this purpose the Electronic Number Mapping System (ENUM) and in 2007 released the first version of PRD IR.67.

ENUM based Routing

Moreover Mobile Operators in over 50 countries have to support Mobile Number Portability (MNP). Although for MNP is a great feature for end subscribers, it makes the signalling more complex and costly for the Operators. The MNP is not just a problem for signalling (routing) but also for billing and management of interconnect agreements. Last but not least it can be a significant issue for content and application providers who may not be aware of the change of the operator for a particular user.

Continue reading

SIP Illustrated 5: SIP Session Routing

In the last post we have seen a basic SIP (VoLTE) session. This time we should analyze in more detail, what headers are used by network elements for their routing decisions and how they discover what port and IP to use. In practice that’s what people are not always sure about. They know the flow, order of signalling messages, but when something goes wrong, they are just guessing what could be the reason.

SIP Message Routing

Let’s recap what we have learnt so far. We use loose routing. So if a SIP message contains a Route header, we will use the top most one for the routing. If there is no Route header the routing is done based on the Request-URI, which contains the address of the final recipient. Don’t forget, network elements are able to add and modify the headers. The way how we handle the messages and modify their content within the IMS is described in 3GPP standards.

Continue reading

SIP Illustrated 4: SIP Session

To describe a single SIP Session in IMS is not that easy as it maybe sounds and in the beginning it requires a lot of simplification. The purpose of the signaling over SIP is to establish a multimedia session over RTP (or MSRP). That means that SIP helps to locate the recipient and to negotiate the parameters of the RTP session. To do that we need one more protocol, called Session Description Protocol (SDP) which SIP carries in its body. The procedures for IMS describing this mechanism can be found in 3GPP 24.229.

SIP 3 Way Handshake

To set up a session the SIP protocol mandates the SIP INVITE request. It has to be answered by some final response – ideally with 200 OK. To confirm, that the client received the 200 OK message, it sends a special request SIP ACK. The SIP ACK is the only SIP request which doesn’t trigger any response on the server side. The procedure is also known as SIP 3-way handshake.

In this post we will go through a basic VoLTE flow from the SIP and SDP point of view.

Continue reading

SIP Illustrated 3: Routing and IMS Registration

In the last post I promised that this time we will take a closer look on SIP headers which are related to routing. SIP routing is very flexible and most of the SIP textbooks are explaining it in a very general way. Here we focus only on routing in IMS context. We should also point out that there are two methods how to route SIP messages – so called strict routing and loose routing. As the strict rooting is obsolete since 2002 and 3GPP mandates only the loose routing for IMS, we will talk just about the loose routing.

The first and the most important header is the Request-Line, which contains the Request-URI. It allows us to route a SIP request directly to a Server. The response then follows the Via header. SIP Client and each proxy which wants to intercept the response adds itself into Via headers of the SIP request. During the processing of the response then each proxy removes its own Via record from the message. The Via header is also used to detect possible loops in signalling.

SIP Request - Response

SIP Request – Response

 

In practice the UAs can’t see directly one each other and we have to use the IMS network to provide the routing. The first scenario we should go through is the IMS Registration. A VoLTE UE initiates a SIP REGISTER to the P-CSCF, using the P-CSCF IP that was made available during the LTE Attach. The Request-URI is set to the SIP-URI of the domain name of the home network.

Continue reading

SIP Illustrated 2: SIP Message

The general structure of a SIP message is based on Internet Message Format (RFC5322, RFC2822). With some minor differences in character sets the SIP message syntax is identical to HTTP 1.1 (but surely the SIP is not an extension of HTTP).

SIP Message

SIP Message

The SIP messages start with the Start-line, which is followed by a number of header fields in the format name:value. An empty line separates the header fields from the optional message body. As the SIP is a textual protocol, with just a little practice with Wireshark or a similar tool, it is not that difficult to analyze the massages. But to truly understand the headers in the context of IMS requires some experience. In this post we will highlight the most important message parameters.
Continue reading

SIP Illustrated 1: Basics

In November 2000, the Session Initiation Protocol (SIP) was accepted by 3GPP as a signaling protocol of the IP Multimedia Subsystem (IMS) network for IP-based streaming multimedia services. Later it was extended for video conferencing, streaming multimedia distribution, instant messaging, presence information, file transfer, etc.

SIP in VoLTE

SIP in VoLTE

The SIP protocol is easy to understand as it is text-based and practically derived from the Hypertext Transfer Protocol (HTTP) and the Simple Mail Transfer Protocol (SMTP). SIP is very flexible and well designed for Internet telephony, on the other hand it has also some disadvantages and limitations. If you’re new to IMS signalling or you just need some brief introduction into SIP, I hope you’ll find this post useful.

Continue reading